

Open Hierarchical Relation Extraction

Kai Zhang¹, Yuan Yao¹, Ruobing Xie², Xu Han¹, Zhiyuan Liu¹, Fen Lin², Leyu Lin² and Maosong Sun¹ ¹Tsinghua University ²WeChat Search Application Department, Tencent *NAACL-HLT 2021*

Relation Hierarchy

- In most modern KBs, relations are organized as hierarchies
 - 1. crucial in establishing the relation schemes of KBs
 - 2. better for users to understand
 - 3. easy to utilize in downstream applications

Open Hierarchical Relation Extraction OpenRE is inherently in close Hierarchy significant person Training Expansion connection with relation hierarchies instances participant relative spouse 1. Integrating information from hierarchies into OpenRE models: father winner child better model relations' inter-dependencies Representation Novel Test better extract new relations Learning relations instances 2. Automatically adding novel relations Relation OHRE Clustering to relation hierarchies: less time-consuming Figure 1: The workflow of OHRE framework. Trained do not need expert knowledge with relation hierarchy and labeled instances, OHRE extracts novel relations from open-domain corpora and

adds them into the existing hierarchy.

OHRE Framework

- Relation Representation Learning-----Better utilize hierarchical information
 - Relation Embedding Encoder
 - Dynamic hierarchical triplet objective
 - Hierarchical curriculum learning
 - Pair-wise Virtual Adversarial Training
- Relation Hierarchy Expansion------ Better add novel relation to hierarchies
 - Relation Prototype Learning
 - Top-down hierarchy expansion algorithm

Representation Learning - Relation Embedding Encoder

Relation Instance Encoder:

$$\boldsymbol{v} = \text{CNN}(s, e_h, e_t). \ \|\boldsymbol{v}\|_2 = 1$$

Measure distance between two representations

$$d(m{v}_1,m{v}_2) = \|m{v}_1 - m{v}_2\|_2^2$$

Representation Learning - Dynamic hierarchical triplet objective

- Given relation r_i and r_j , randomly sample:
 - anchor instance a, positive instance p from r_i
 - negative instance *n* from *r_j*

$$\mathcal{L}_t = \sum_{r_i, r_j \sim T} \max[0, d(\boldsymbol{v}_a, \boldsymbol{v}_p) + \lambda_d \frac{l(r_i, r_j)}{1 + l(r_i, r_j)} - d(\boldsymbol{v}_a, \boldsymbol{v}_n)]$$

Representation Learning - Hierarchical curriculum learning

• Use as a warm-up

Figure 3: OHRE samples triplets from relations in hierarchy following a shallow-to-deep paradigm.

Representation Learning - Pair-wise Virtual Adversarial Training

• For each randomly sampled instance pair, we add worst-case perturbations and penalize the loss changes as follows:

$$\mathcal{L}_v = \sum_{v_1,v_2} \|d(oldsymbol{v}_1,oldsymbol{v}_2) - d(ilde{oldsymbol{v}}_1, ilde{oldsymbol{v}}_2)\|_2^2$$

• Final loss is defined as:

$$\mathcal{L} = \mathcal{L}_t + \lambda_v \mathcal{L}_v$$

Hierarchy Expansion – Relation Prototype Learning

- Cluster new relations from unsupervised data by Louvain
 - a graph cluster algorithm
 - automatically terminates clustering
- Prototype is represented with instances
 - prototype of a novel relation consists of all its instances
 - prototype of an existing relation contains all instances from itself and all children relations

Hierarchy Expansion – Top-down hierarchy expansion algorithm

 $w(v_1, v_2) = \max[0, 1 - d(v_1, v_2))]$

• Similarity of two prototypes:

$$S(r_i,r_j) = rac{\sum\limits_{v_1\in P_i}\sum\limits_{v_2\in P_j}w(v_1,v_2)}{|P_i|\cdot|P_j|}\cdot\sqrt{1+|P_j^s|}$$

Algorithm 1 Top-Down Hierarchy Expansion

Require: *r*: A novel relation **Require:** λ_W : Expansion threshold 1: Init search candidates C = root relations of trees 2: Init highest similarity in previous layer W = 03: while C not empty do Search relation $\hat{c} = \arg \max S(r, c)$ 4: $c \in C$ 5: if $S(r, \hat{c}) > W$ then 6: // Move to the next layer Update highest similarity $W = S(r, \hat{c})$ 7: 8: Update search candidates C = children of \hat{c} 9: else 10: Stop searching 11: if $W > \lambda_W$ then Expand r as child of \hat{c} 12: 13: else Cast r as singleton relation 14:

Hierarchy Expansion – Top-down hierarchy expansion algorithm

(a) The expansion recommendation by OHRE on an existing relation hierarchy. The average connection score at each time step is shown.

(b) OHRE first clusters novel relations from open-domain corpora, and learns relation prototypes. Step 1: 0.415 creator

Step 2: 0.439

author

Experiments – Datasets

- FewRel Hierarchy
 - re-split from FewRel
 - a supervised dataset created from Wikipedia and Wikidata.
- NYT-FB Hierarchy
 - re-split from NYT-FB
 - a distantly supervised dataset created from New York Times and Freebase

		Relations	Instances
FewRel Hierarchy	Train	64	44,800
	Dev Test	16	1,600 1,600
NYT-FB Hierarchy	Train	212	33,992
	Dev Test	50	3,835 3,858

Experiments – Relation Clustering Results

Dataset	Model	F1	B ³ Prec.	Rec.	 F1	V-measu Hom.	re Comp.	ARI
FewRel Hierarchy	VAE (Marcheggiani and Titov, 2016) RW-HAC (Elsahar et al., 2017) SelfORE (Hu et al., 2020) RSN-CV (Wu et al., 2019) OHRE	23.0 32.7 60.6 63.8 70.5	14.2 28.0 60.1 57.4 64.5	61.4 39.4 61.1 71.7 77.7	24.1 39.7 70.1 72.4 76.7	17.7 36.0 69.5 68.9 73.8	37.9 44.4 70.7 76.2 79.9	4.9 12.4 54.6 54.2 64.2
NYT-FB Hierarchy	VAE (Marcheggiani and Titov, 2016)RW-HAC (Elsahar et al., 2017)SelfORE (Hu et al., 2020)RSN-CV (Wu et al., 2019)OHRE	25.2 35.0 38.1 38.9 43.8	17.6 43.3 42.6 26.3 31.4	44.4 29.4 34.5 74.2 72.3	35.1 58.9 59.0 44.1 60.0	28.2 61.7 60.7 74.3 49.9	46.3 56.3 57.5 55.4 75.3	10.5 28.3 30.4 26.2 31.9

Table 1: Relation clustering results on two datasets (%).

Experiments – Relation Clustering Ablation study

hierarchical information is helpful in relation clustering.
reducing over-fitting with Pair-wise VAT is important.

Model	$ B^3 F1$	V-F1	ARI
RSN-CV	63.8	72.4	54.2
w/o VAT	53.3	65.0	43.2
OHRE	70.5	76.7	64.2
w/o Dynamic Margin	68.9	76.1	63.5
w/o Curriculum Train	68.5	75.7	62.1
w/o Pair-wise VAT	58.3	68.8	49.5

Table 2: Ablation results on FewRel Hierarchy (%).

Experiments – Relation Expansion Results

Dataset	Method	Golden Cluster	 F1	Match Prec.	Rec.	1 F1	Taxonom Prec.	y Rec.	Arith. F1	Harm. F1
FewRel Hierarchy	RW-HAC RSN-CV OHRE		33.2 69.6 78.5	33.9 63.7 73.6	37.6 85.8 88.4	37.5 34.5 53.3	37.5 38.5 57.1	37.5 31.3 50.0	35.3 52.0 65.9	35.2 46.1 63.5
	RW-HAC RSN-CV OHRE	✓		N/A		43.8 37.5 57.4	43.8 37.5 62.5	43.8 37.5 53.1	71.9 68.8 78.7	60.9 54.5 73.0
NYT-FB Hierarchy	RW-HAC RSN-CV OHRE		29.6 45.1 51.7	34.3 33.2 42.7	34.0 83.1 76.2	10.1 10.5 22.3	8.7 15.2 23.9	12.0 8.0 21.0	19.8 27.8 37.0	15.0 17.0 31.2
	RW-HAC RSN-CV OHRE	✓		N/A		20.0 13.0 23.0	16.7 16.0 23.0	25.0 11.0 23.0	60.0 56.5 61.5	33.3 23.1 37.4

Table 3: Hierarchy expansion results. Golden cluster indicates the golden relation clusters are given, in which case matching metric for relation clustering is not applicable. Arith: arithmetic mean, Harm: harmonic mean.

Experiments — Different Relation Topologies Results

- single relation without a parent (6 relations)
- relation with a parent in train set (8 relations)
- relation with a parent in test set (2 relations)

	Relation Clustering sgl. p-trn. p-tst.			Hierarchy Expansion sgl. p-trn. p-tst.			
RW-HAC	31.6	35.0	42.8	60.0	0.0	0.0	
RSN-CV	67.1	77.8	64.4	58.8	0.0	0.0	
OHRE	75.2	84.6	53.9	58.8	36.4	0.0	

Table 4: Relation clustering (B^3 F1) and hierarchy expansion (Taxonomy F1) results on relations in different hierarchy topologies. sgl.: relations without a parent, p-trn.: parent in train set, p-tst.: parent in test set.

Future Work

- Design methods to model the **global** interaction between new relations and hierarchy
- Develop end-to-end models to **jointly** optimize clustering and expansion stages for better results.

Thank you!

Code and Data: https://github.com/thunlp/OHRE

Contact: drogozhang@gmail.com

