LED: Lexicon-Enlightened Dense Retriever for Large-Scale Retrieval

 Kai Zhang¹, Chongyang Tao², Tao Shen³, Can Xu², Xiubo Geng², Binxing Jiao², and Daxin Jiang²
¹The Ohio State University, Columbus, Ohio, USA
²Microsoft Corporation, Beijing, China
³AAII, FIET, University of Technology Sydney, Sydney, Australia

Dense Retriever - Sequence-level Semantic Matching

Lexicon-aware Retriever - Term-level Exact Matching

Lexicon-aware Retriever - Term-level Exact Matching

Dense and Lexicon-aware Retrieval Systems

- Dense Retriever (38.1 MRR@10 on MS MARCO)
 - Sequence-level Semantic Matching
 - Condensed Embedding Size (e.g., 768)

40% Disagreement

- Lexicon-aware Retriever (38.3 MRR@10 on MS MARCO)
 - Lexicon-level Exact Matching
 - Sparse Embedding Size (e.g., vocab size=30k)

Can one embedding have both retrieval capabilities?

Experiment Setup

• Dense Retriever: coCondenser (110M)

• Lexicon-aware Retriever: DistilBERT (66M)

 \mathcal{N}^{S} : hard negatives for method S(High-ranked false passages by S) SCould be BM25, Lexical Retriever, and Dense Retrievers

Strategy 1 - Lexicon-Augmented Contrastive Training

 \mathcal{N}^{S} : hard negatives for method S(High-ranked false passages by S) SCould be BM25, Lexical Retriever, and Dense Retrievers

Strategy 1 - Lexicon-Augmented Contrastive Training

 \mathcal{N}^{S} : hard negatives for method S(High-ranked false passages by S) SCould be BM25, Lexical Retriever, and Dense Retrievers

Strategy 2 - Rank Consistent Regularization

- 1. Pair-wise ranking supervision
- 2. No margin requirement for weak supervision
- 3. No training for lexical model (teacher)

Table 1: Experimental results on MS MARCO, TREC DL 2019 (DL'19), and TREC DL 2020 (DL'20) datasets (%). We mark the best
results in bold and the second-best underlined. Numbers marked with '*' mean that the improvement is statistically significant
compared with the baseline (t-test with <i>p</i> -value < 0.05).

Methods	PLM	Ranker	Multi	MS MARCO Dev			DL'19	DL'20
		Taught	Vector	MRR@10	R@50	R@1k	NDCG@10	NDCG@10
Lexicon-Aware Retrieve	r							
BM25 [40]	-			18.7	59.2	85.7	50.6	48.0
DeepCT [7]	BERT _{base}			24.3	69.0	91.0	55.1	55.6
COIL-full [14]	BERT _{base}			35.5	-	96.3	70.4	-
UniCOIL [26]	BERT _{base}			35.2	80.7	95.8	-	-
SPLADE-max [10]	DistilBERT			34.0	-	96.5	68.4	-
DistilSPLADE-max [10]	DistilBERT	\checkmark		36.8	-	97.9	72.9	-
UniCOIL A [4]	BERT _{base}			34.1	82.1	97.0	_	-
Dense Retriever								
ANCE [49]	RoBERTa base			33.0	-	95.9	64.5	64.6
ADORE [52]	RoBERTa _{base}			34.7	-	-	68.3	66.6
TAS-B [17]	DistilBERT	\checkmark		34.7	-	97.8	71.7	68.5
TAS-B + CL-DRD [51]	DistilBERT	\checkmark		38.2	-	-	72.5	68.7
TCT-ColBERT [28]	BERT _{base}	\checkmark		35.9	-	97.0	71.9	-
ColBERTv1 [21]	BERT _{base}		\checkmark	36.0	82.9	96.8	67.0	66.8
ColBERTv2 [42]	BERT _{base}	\checkmark	\checkmark	39.7	86.8	98.4	72.0	62.1
coCondenser [13]	BERT _{base}			38.2	-	98.4	-	-
PAIR [38]	ERNIE _{base}	\checkmark		37.9	86.4	98.2	-	-
RocketQAv2 [39]	ERNIE _{base}	\checkmark		38.8	86.2	98.1	-	-
AR2-G [53]	BERT _{base}	\checkmark		39.5	-	-	-	_
Our Models								
LEX (Warm-up)	DistilBERT			36.1	84.2	97.5	67.4	66.4
LEX (Continue)	DistilBERT			38.3	85.9	98.0	72.8	67.7
DEN (Warm-up)	BERT _{base}			36.1	83.5	97.7	64.7	65.9
DEN (Continue)	BERT _{base}			38.1	86.3	98.4	69.1	67.8
DEN (w/ RT)	BERT _{base}	\checkmark		39.6	86.7	98.4	71.8	<u>69.7</u>
LED	BERT _{base}			39.6	86.6	98.3	70.5	67.9
LED (w/ RT)	BERT _{base}	\checkmark		40.2^{*}	87.6 *	98.4	74.4 *	70.2 *

- 1. LED **signifincatly benefits** from lexical knowledge, even outdoing its teacher.
- Lexical knowledge distillation is comparable with reranker distillation.
- Lexical knowledge distillation is compatible with reranker distillation. Combining them together could reach SoTA.

Teaching strategies comparison

Table 2: Evaluation results of different teaching strategies on 1.Any lexical teachingMS MARCO Dev (%). '*' refers to statistical significance.strategies could imp

Methods	MRR@10	R@1k
No Distillation	38.1	98.4
Filter [35]	38.4	98.4
Margin-MSE [16]	38.5	98.3
ListNet [48]	38.7	98.2
KL-Divergence [53]	39.0	98.4
Ours	39.6 *	98.3

- Any lexical teaching strategies could improve dense retriever.
- 2. Weak supervision is the key.

Ablation Study

Table 4: Ablation Study on MS MARCO Dev (%). Negs is short for negatives. '*' indicates statistical significance.

Retrievers	MRR@10	R@1k
LED	39.6 *	98.3
w/o Rank Regularization	37.9	98.5
w/o LEX Continue Negs ($\mathcal{N}^{ ext{lex2}}$)	39.4	98.3
w/o LEX Warm-up Negs ($\mathcal{N}^{ ext{lex1}}$)	39.4	98.3
w/o LEX Mixed Negs ($\mathcal{N}^{ ext{lex1}} \cap \mathcal{N}^{ ext{lex2}}$)	39.2	98.4

Visualization

- Comparing to dense (DEN) model, LED model's retrieval passages are more aligned with lexical model (LEX).
- Thanks to weak supervision, the alignment is not too strong. LED keeps most dense properties.

Thanks! Q & A

Code

Paper